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only need to know the spacial distribution of the mass content of the smoke
particles rather than the details of their particle size distributions and
nunber concentrations. In this report, a linear relation, independent of
particle size distribution, between aerosol volume extinction coefficient and
mass content 1s derived and applied to several military smokes: solutions of
orthophosphoric acid 1in water, zinc chloride in water (HC smoke), diesel fuel,
fog 0il, and sulfuric acid smoke. Comparison of the theoretical extinction-mass
relation with infrared (IR) transmission measurements of Milham (1976), Milham
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percent) between theory and measurement for the highly absorbing phosphoric acid
and sulfuric acid smokes, but only fair-to-poor agreement (up to factors of 2.5
to 10 differences) for weakly absorbing HC and fog oil smokes.y. Relationships
between smoke aergsol volume absorption coefficient and aerosol mass and between
aerosol volume backscatter coefficient and mass are also derived. The
relationships are valid only at -particular wavelengths that depend on the
aerosol refractive index and on the range of particle sizes present in a
particular polydispersion. Several applications are suggested: (1) prediction
of IR (and in some cases visible) extinction coefficient from knowledge of smoke
cloud mass content; or, conversely (2) inference of path-integrated smoke mass
content from an IR laser transmission measurement through the smoke cloud; (3)
determination of smoke mass content at a particular point in a smoke cloud from
a smoke aerosol absorption measurement with an IR laser spectrophone; (4)
determination of smoke backscatter coefficient from knowledge of smoke mass
content; (5) inference of extinction at one IR wavelength from knowledge of that
at another IR wavelength; and (6) prediction of phosphoric aecid and HC smoke
extinction coefficient as a function of atmospheric relative humidity from
knowledge of smoke mass expenditure.
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INTRODUCTION

During the last decade, a number of scientists!™ have investigated
possible relationships between extinction (or atmospheric visibility)
and mass content of atmospheric aerosols. In general, these investiga-
tions indicate that there is no unique relation between extinction and
aerosol mass although an approximate proportionality may exist for
specific locations or aerosol type.

However, smoke particles are distinctly different from natural aerosol
particles in three respects: they are generally smaller, more nearly
homogeneous, and generally spherical in shape. These three properties
enable us to derive a unique relation, independent of the particle size
distribution, between the IR (and in some cases visible) extinction
coefficient and mass concentration for phosphoric acid, HC, petroleum
0il, and sulfuric acid smokes. These extinction-mass relationships are
extended to relations between aerosol absorption coefficient and mass
content, and between aerosol backscatter coefficient and mass content.

Our results have considerable practical application. They suggest that
knowledge of smoke mass content implies knowledge of IR (and in some
cases visible) extinction coefficient. Alternatively, smoke mass con-
tent could be inferred from IR transmission measurements, IR spectro-
phone absorption measurements, or visible-wavelength lidar backscatter
measurements.

EXTINCTION, ABSORPTION, BACKSCATTER, AND MASS CONTENT OF SMQKES

Consider a polydispersion of spherical smoke particles characterized by
a size distribution n(r). We want to derive relationships between the
aerosol extinction and absorption coefficients o, and o,, the backscat-

ter coefficient Opg s and the aerosol mass content M given by ’

R, J, Charlson, N. C. Ahlquist, and H. Horvath, 1968, On the Generality
of Correlation.of Atmospheric Mass Concentration and Light Scatter,
Atmos Environ, 2:455-464

., E. Noll, P. K. Mueller, and M. Imada, 1968, Visibility and Aerosol
Concentration in Urban Air, Atmos Eaviron, 2:465~475

™, J. Pilat and D. 5. Ensor, 1970, Plume Opacity and Particulate Mass
Concentration, Atmos Environ, 4:163-173

YE. M. Patterson and D. A. Gillette, 1977, Measurements of Visibility vs
Mass~Concentration for Alrborne Soil nrtifclu. Atmos Envirom, 11:193-
196
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o sfnx'Qe(m,x)n(t)dt : )

o = fn’Qa(m,x)n(!)dl : (2)
1 2
g = Ix fn G(m,x)n(x)dr , (3
4 3
Mspf-i—nn(z)dz, %)

where p is the smoke aerosol density, Qe (m,x) and Q, (m,x) are the
efficiency factors for extinction and absorption for a particle with
refractive index m and size parameter x = 2m/2, and G (m,x) is the
backscatter efficiency (or gain) defined as the ratio of the backscatter
cross section to the geometiic area. These efficiency factors multi-
plied by n? give the corresponding single-particle cross sections. 1In
general the extinction, absorption, and backscatter efficiencles are
rathex complicated functions of particle size, refractive index, and
wavelength.

Examples of the behavior of the efficiency factors for extinction (for
38 percent sulfuric acid in water at wavelengths X = 0.55mm, 9.5im),
absorption (for 38 percent sulfuric acid at ) = 10.6um), and backscat-
texing (for 75 percent sgulfuric acid at A = 0.694um) are shown in fig-
ures 1 through 4. Numerous other examples for other smokes and other
wavelengths are given in the appendix, figures A-1 through A-10.

For particles large compared to the wavelength (x >> 1), Qe + 2 and
2

m-1
Q@ > 1-|aFT
more complicated expressions can be worked out for Q and
(Penndorf).® For particles having sizes outside the large particle
asymptotic rtegion and the Rayleigh region, the rigorous Mie theory must

as shown by Chylek;® for small particles (x << 1),

Petr Chylek, 1975, Asymptotic Limits of the Mie-Scattering
Characteristics, J Opt Soc Amer, 65:1316-1318

'R. B. Penndorf, 1962, Scattering and Extinction Coefficients for Small
Spherical Aerxosols, J Atmos Sci, 19:193
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Figure 1. Efficiency factor for extinmction Q, for 38 percent sulfuric
acid (62 percent water) droplets at a wavelength X\ = 0.55um
(index of refraction m = 1.394-01) and its approximation by
a straight line Q, (x) = cx for x < xj. The approximation
overestimates the exact value of Qe at small size parameters
x, and underestimates it at larger x (still with x ixm).
These two errors tend to cancel out in the evaluation of the
integral in equation (1).
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: Figure 2. As in figure 1 except for A = 9.5um. Due to the large
imaginary index at this wavelength (m = 1.46-0.381) the g
character of the Q,(x) curve differs markedly from that at ) ‘
= 0.55mm. The Qu(x) curve again lends itself to

approximation by a straight line Q.(x) = cx for x < x,, in
E this case more accurately than the Qu(x) curve in figure
1. As in figure 1, the approximation overestimates the
exact value of for esome size paramsters x, but
underestimates it for others (with x < x.) leading to
4 cancellation of these errors in the evalustion of the
integral in equation 1. However, since the approximation is
! so good for all size paramsters x < x, it is not necessary
| for particles of a polydispersion to have sise parameters x
throughout the range o < x < x, for the limear relation (5)
to be fatrly sccurate, as cantellation of errors is not so
important (as it is at A « 0y33m).




Figure 3.

Figure 4.
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As in figute 2 except for the efficiency factor for
absorption at A = 10.6im (refractive index of 38 percent
sulfuric acid at this wavelength is taken to be m =
1.48-0.171). The Q,(x) curve can be well approximated by a
stralght 1line Q. (x) = ¢'x for x £ X, leading to the
size-distribution~independent lineat relation between
aerosol absoiption coefficient and mass content according to
equation (6).
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Normalized backscatter gain G for 75 percent sulfuric acid
droplets at the ruby laser wavelength A = 0.6%9%4m (m =
1,428-2 x 107°1) and its approximation by a straight line
6(x) = c"x for x < x,. The approximation overest imates the
exact value of g at some size parameters x, but
underest imates it at others (still with x < x_ ). These two
errors tend to cancel out in the evaluation of the integral
in equation (3). For backscatter this cancellation of error
is particularly important (as compared to extinction and
absorption in figures 1 through 3) because fot“ sone size
parmeters (for example x = 8) the value of G » ¢" x differs
considerably from the exact vslue. However, we do not
necessarily have to have particles with radii throughout the
entire range o < x < x, for cagcellation of errors to occur,




generally be used. However, we propose to approximate the efficlency
factors Qe(x)’ Qa(x), and G(x) for particles having radii less than some
maximum value I, (vhere 1 = x“;A/Zw) by linear functions of particle
size parameter Q cx, Q, = ¢'x, and G = c"x as shown in figures 1
through 4 and A-f through 1—10. The parameters c, ¢”, and c” are then
functions only of particle refractive index which is, in turn, a func-
tion of material composition and wavelength. This approximation proce-
dure was originally used by Chylek’ for atmospheric cloud and fog
droplets. The consequence of utilizing these simple 1linea:
approximations for the Mie efficiency factors in the expressions for
aerosol extinction, absorption, and backscatter coefficients given by
equations (1) through (3) are far reaching. This is because these
expressions now contain the integral fx3n(t)dx, and thus the
coefficients become proportional to aerosol mass and independent of the
particle size distribution n(r):

g, =53 M, (5)

% = M (6)

3" :

where c(1), ¢“(}2), and c"()) are the slopes of the straight lines ap-

proximating the Mie efficiency factors as in figures 1 through 4 and A-l

through A-10. 1If the refractive index m(1) is a sloxly varying function

of wavelength, then we might expect c()), c¢” (1), and c¢"()\) to be slouly

varying functions of wavelength leading to the extinction, absorption,

:ir/lci Pa’ckscattet coefficients g, gy, and op, being proportional to
o !

TPetr Chylek, 1978, Extinction and Liquid Water Content of Fogs and
Clouds, J Atmos Sci, 35:296~300

R, G. Pinnick, D. L. Hoihjelle, G. Fernandez, E. B. Stermark, J. D.
Lindberg, S. G. Jennings, and G. B. Hoidale, 1978, Vertical Structure in
Atmospheric Fog and Haze and Its Effects on IR and Visible Extinctiom, J
Atmos Sci, 35:2020-2032

Petr Chylek, J. T. Kiehl, and M. K. W. Ko, 1979, Infrared Extinction
and the Mass Concentration of Atwospheric Aetosols, Atmos Eaviron,
13:169-173




The equation (5) relating aerosol extinction coefficient and mass con-
tent is distinctly different from that of Box and McKellar'® who derived
a relation between spectrally integrated aerosol optical depth and
columnar mass content. The primary distinction is that Box and
McKellar's result is integrated over all wavelengths, whereas our
expression (5) holds at a particular wavelength. Also, Box and McKellar
do not approximate the extinction efficiency factor by a linear function
of size parameter.

I+ might be argued that in some cases approximating the extinction
efficiency factor Q, (figure 1) and the backscatter gain G (figure 4)
with linear functions of particle size parameter might be rather precar-
ious. However, note in these cases that for some values of x < Xy the
Q, = cx (or G = ¢"x) approximation overestimates the exact Mie result,

while for other values of x < the opposite is true. These approxima-
tions are more accurate if size distributions of particles have a range
of size parameters throughout much of the regime o < x < so that

cancellation of errors in evaluation of the integrals in equations (1)
and (3) can occur. Chance of cancellation is particuiarly important in
backscattering, where differences between the approximation and the
exact Mie result are sometimes large.

Keeping in mind the cancellation-of-error factor, we have carried out
the procedure of approximating the extinction, absorption, and backscat-
ter efficiency factors for phosphoric acid, HC, diesel oil, fog oil, and
FS esmokes at selected visible and IR wavelengths. Concentrations of 20,
50, 65, and 85 percent orthophosphoric acid in water; 20, 65, 50, 40,
and 75 percent zinc chloride in water (HC smoke); and 38, 75 percent
sulfuric acid in water (FS smoke) were used in the calculations. The
indexes of refraction for the orthophosphoric acid ana zinc chloride
solutions were measured by Querry and Tyler!! and provided by M. E.
Milham of the Chemical Systems Laboratory.* The index values for fuel
and petroleum oils were taken from Conner and Hodkinson'? and Hale et
al;!'* those for the sulfuric acid solutions were takea from Palmer and
Williams. '*

!M. A, Box and B. H. J. McKellar, 1978, Direct Evaluation of Aerosol
Mass Loadings from Multispectral Extinction Data, Quart J Roy Meteorol

3oc, 104:755-781

!¥, R, Querry and I. L. Tyler, 1978, Complex Refractive Indices in the
Infrared for H4PO, in Water, J Opt Soc Am, 68:1404

*Private communication, 1978

!M. D, Conner and J. R. Hodkinson, 1967, Optical Properties and Visual
Effects of Smoke-Stack Plumes, US Department of Health, Education, and
Welfare, Public Health Service Publication, 999-AP-30

1%, M. Hale, I. L. Tyler, and M. R. Querry, 1978, Complex Refractive
Indices in the Infrared for Selected Oils and Alcohols, J Opt Soc Am,
68:1403

', F. Palmer and D, Williams, 197 tical Co Sulfuri
Acid: Applicntionn to the Clouds of Vu?\'u?oP M‘H’:‘ES&-‘% urde
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The 1esults for aerosol extinction and absorption are summarized in
tables A-1 through A-13 in the appendix. Given for various wavelengths
aie values of the slope parameter c (or c¢”) of a straight line approxi-
mating the efficiency factor Qe(m,x) (ox Qg[m,x]) for x S x, (or equiva-
lently for t <t ); values of the quantity 3wc/23p (or 3wc”/2Xxp) which
if multiplied by the smoke mass content give the extinction (or absorp-
tion) coefficient according to equations (5) and (6); and values of the
ratio of absorption to extinction coefficlents o_/o_. Estimates of
maxiomum errors in the values of 37c/2xp (or 3mc” 2X§) tesulting from
errors in the Qe = cx (or Q; = c¢“x) approximation are also shoun in the
tables. No values are shown when the estimated errors exceed 100 per-
cent, The reader should be cautioned that the values of the ratio of
absorption to extinction coefficients /o, can be used only 1if the
maximum radius conditions are satisfied Pox eboth extinction and absorp-
tion.

Some obvious conclusions drawn from tables A-1 through A-13 atre as
follous:

a. For phosphoric acid solutions in water (tables A-1 through
A-4), the slope parameter c()) is a slowly varying function of wave-
length for 3um < A < 5m. This implies that the extinction coefficient
should have 1/} wavelength dependence in this spectral region according
to equation (5). The same conclusion applies to the HC smoke solutions
(tables A-5 through A-9) where -the slope parameter c(}A) is even less
sensitive to wavelength in the 3im to 4um region. For the longer 8um to
12im wavelength range the slope parameter c()) varies by up to a factor
3.4 for phosphoric acid solutions, while in the case of HC smoke the
variation is markedly less (at most 50 percent).

b. Phosphoric acid solutions generally have a much lower single
scattering albedo than HC smoke solutions. For example, in the 3.5mm to
4um region the percentage of scattering to extinction is at least 90
percent for HC solutions as compared to 50 to 90 percent for phosphoric
acid solutions.

c. For petroleum oil smokes (tables A-10 and A-11l) the variation
of c()) throughout the IR is small (about 30 percent), indicating an
approximate 1/) dependence of extinction coefficient; this is also the
case for absorption in the 8m to 12im wavelength range. There is,
however, considerable fluctuation in ¢“(A) (up to a factor of about 5)
for petroleum smokes in the 3um to 5mm region.

d. For FS smoke of given mass, 38 percent acid is more effective
in causing extinction in the uavelength range 3um < A < Sum than 18 75
percent acid, as can be seen by comparing values of 3vc/2)p in tables
A-12 and A-13. The opposite is true for 8im < A <12um.

A summary of the G = c"x apptoximation results relating smoke backscat-
ter coefficient to smoke mass content is presented in table A-14. Shosun
for the ruby (A = 0.694m) and neodymium-YAG (A = 1,06im) laser wave-
lengths are values of the maximum radius Ty values of the slope param—
eter ¢"(1), snd values of the quantity 3c"/8)p which if multiplied by

the smoke mass content give the emoke backscatter coefficlent o,
according to equation (7). Note, however, that consideration of even
slightly differeant complex tefractive indexes matkedly changes the
functionsl form of the backscatter gsin and hence the value of c"(1).




APPLICATION TO PHOSPHORIC ACID,
HC, PETROLEWM OIL, AND FS SMOKE

Before we can have confidence in applying the linear relationships (5)
through (7) between smoke aerosol extinction, absorption, backscatter,
and mass content, we should test their validity with existing measure-
ments that are available. Carlon et al,!® Milham et al,!® and Milham!'’
have measured the transmission through phosphoric acid, red phosphorus,
HC, petroleum oil, and sulfuric acid smokes. Most measuroments were
made in the 3um to Sum and 7ym to 13um wavelength ranges, although
transmission measurements for petroleum oil smoke and FS were made for 2
= 0,36m to 2.35m. The same transmission cell was used for all of the
above work and consisted of a 22 m3 cylindrical test chamber with a
transmission path L of 3.05 m length. A smoke mass content measurement
was made simultaneously with the transmission measurement by weighing
particles collected onto filters.

The extinction coefficient-mass relation (5) must be compared cautiously
to measurements of these quantities.  The reason is that since extinc-
tion coefficients are derived from transmission measurements, forward
scattering corrections'®*!? and mpltiple scattering corrections should
be considered. Forward scattering corrections arise from singly scat-
tered photons that enter the detector along with the unscattered
(direct) radiation due to the finite angular aperture of the detector.
Similarly, multiple scattering corrections arise from signal contributed
by multiple scattered photons. Both these effects cause increased
detector signal and hence result in a smaller inferred extinction
coefficient if they are not taken into account. We estimate the forward
scatter corrections for the experimental setup used by Carlon and Milham
to be not more than 3 percent and have neglected them; however, no
attempt was made to make quantitative estimates of multiple scatter
corrections.

'%, R. Carlon, D. H. Anderson, M. E. Milham, T. 1. Tarnove, R. H.
Frickel, and I. Sindoni, Infrared Extinction Spectra of Some Common
Liquid Aerosols, Appl Opt, 16:1598-1605

1%, E. Milham, D. H. Anderson, R. H. Frickel, and T. L. Tarnove, 1977,
New Findings on the Nature of WP/RP Smokes, Technical Report ARCSL-TR-
77067, US Army ARADCOM, Chemical Systems Laboratory, Aberdeen Proving
Ground, MD ‘

!, E. Milham, 1976, A Catalog of Optical Extinction Data for Various
Aerosols/Smokes, Report ED-SP-77002, Edgewood Arsenal, Aberdeen Proving
Ground, MD

164, Deepak and M. A. Box, 1978, Forward Scattering Corrections for
Optical Extinction Measurements in Aerosol Media. 1: Monodispersions,

Appl Opt, 17:2900-2908

1%A, Deepak and M. A. Box, 1978, Porward Scattering Corrections for
Optical Extinction Measurements in Aerosol Media. 2: Polydispersions,

Appl Opt, 17:3169-3176

14




PHOSPHORIC ACID AND RP SMOKE

The extinction coefficient-mass relation (5) for 60 percent phosphoric
acid smoke is compared to measurements of Milham et al!® in figures 5
and 6. The agreement is good in both the 3um to 5im and 8um to 12um
spectral regions, as the relation (5) generally overpredicts the extinc-
tion to mass ratio o /M, but by not more than about 30 percent [here the
slope parameters c( )S were determined by using refractive indexes for 65
percent phosphoric acid rather than 60 percent acid]. This good agree-
ment is not unexpected as the extinction efficlency factors are well
approximated by linear functions of particle size parameter in the 3um
to 5um and 8um to 12mm spectral regions (see for example figures A-1 and
A-2) and the maximum radius conditions are not strongly viclated.

In contrast to the phosphoric acid results, comparison of the relation
(5) to Milham's'’ measurements on RP smoke (figure 7) shows relatively
poor agreement in the 8um to 12ym spectral region. The reason for the
poor agreement is that the burning of RP/WP smokes apparently results in
production of an unknown chemical species'® whose refractive indexes

T‘
o —
“e 2.0 PHOSPHORIC ACID (60 %)
~ 1.8} '
[
& 1.6t
o
E l.ar © THEORY we=32"T;M)
‘6-' 1.2 —— MEAS.(MILHAM et al,1977)
O 1.0t
308l
506~ o020
z ‘/‘ """""" % o o
E 0.4— \
g 0.2"
PV U CHNT VY SN TN N VN W N VN SR SHY W WY GHN SR WU S |
3 9% 3 6

4
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Figure 5. Values of the ratio of aerosol extinction coefficient to
mass content predicted according to the linear relation (5)
(open circles), and measured by Milham et al (solid 1line)
for 60 percent phosphoric acid aerosol. Since the parameter
c( 1) is nearly wavelength independent (see table A-3) the
relation (5) predicts extinction to have an approximate 1/1
wavelength dependence in the 3ym to 5um spectral region.

!M, E. Milham, D, H. Anderson, R. H. Frickel, and T. L. Tarnove, 1977,
New Findings on the Nature of WP/RP Smokes, Technical Report ARCSL-TR-
77067, US Army ARADCOM, Chemical Systems Laboratory, Aberdeen Proving
Ground, MD

1M, B, Milham, 1976, A Catalog of Optical Extiaction Data for Various
Aerosols/Saokes, Report ED-SP-77002, Rdgewood Arsenal, Aberdeen Proving
Ground, MD
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cannot be approximated by those of phosphoric acid [which was assumed in
determination of c(1) in relation (5)].

HC Smoke

Compared to the highly absorbing phosphoric acid smoke, little spectral
character is evident in the predicted or measured o_/M values for HC
smoke (figures 8 and 9). The predicted values of oelﬁ have approximate
1/) wavelength dependence in both the 3um to 5um and 8um to 12um re-
gions, as the slope parameter c()) is only a slowly varying function of
wavelength. Although this 1/) dependence is borne out by the measure-
ments in the 3um to 5mm spectral region, for the 8mn to 12um range the
measurements show nearly neutral (wavelength independent) extinction.
This markedly different spectral character for the predicted and mea-
sured extinction in the 8um to 12um range can be at least partially
explained on the basis of errors in the Q, = cx approximation. Perusal
of the Q. versus x curves (examples of which are given in figure A-5)
suggests that the relation (5) should overestimate the value of o_/M
throughout the 8um to 12um spectral region (as the HC smoke particles
will have size parameters predominately less than x & 2 and cancellation
of errors does not occur) and the overestimate should be more at A = 8um
compated to A = 12um. Thus larger disagreement between predicted and
measurement results at A = 8um compared to A = 12um. Also, multiple
scatter contributions might account for some of the discrepancy between
the predicted and measured oe/M values in figure 9, but this is unlikely
in view of the fact that the transmission has the same spectral depen-
dence for two widely differing optical depths (the optical depths can be
determined by multiplying the oe/H values by the value of ML, and are
about 0.14 and 1.1 for the solid and dashed curves, respectively).

Fog 0il Smoke

Carlon et al!® describe transmission measurements through petroleum oil
smokes generated either by dropping oil onto a hot plate, which results
in droplets with volume mean radfus of about 1l.7um, or by pyrotechnic
generation, which produces smaller droplets with volume mean tadius of
about 0.3um.

1%, R, Carlon, D. H. Anderson, M. E. Milham, T. L. Tatnove, R. H.
Frickel, and I. Sindoni, 1977, Infrared Extinction Spectra of Some
Common Liquid Aerosols, Appl Opt, 16:1598~1605




Figure 8,

- e

Figure 9.

2.4r
[ HC SMOKE (52% ZnCl,)
20f o THEORY(ce-%%M)

- MEAS.(MILHAM,1976;PYRO DISSEMINATION)
ML=144gm 2

o
T

o
D
T T
o
o]
[0}
o]

MASS EXTINCTION COEFFICIENT (m?g™)
ro
R

- N
o U AT VU U S VRN S S L G N S W S R S |
3.0 3.5 4.0 4.5 5.0
WAVELENGTH (zzm)

Ratlo of aerosol extinction coefficient to mass content
predicted according to the 1linear 1:elation (5) (open
circles), and measured by Milham (solid curve) for HC gmoke
disseminated by pyrotechnic. As for phosphoric acid smoke,
the predicted and measured extinction has roughly 1/
wavelength dependence in the 3um to Sum spectral region.

o
Ne 0.7 [
- HC SMOKE (52% ZnCl,)
> 0.6}
5 o5l © THEORY (ce-%m
B MEAS. (MILHAM, 1976, PYRO DISSEMINATION)
8 0.41 ML=184gm2
O | - ML=I1LI3 gm 2 ~
Zo3L
; @ o] —
2 0.2r ° o _z s
8 O.1}+ ﬁ‘“ - e
[ T T SrET AT WA AT W AT A W AT |
-£°7 8 9 10 11 12 13

WAVELENGTH (um)

Same as figure 8 except for the 7um to 13um spectral
tegion. The 1linear telation (5) (open circles) again
ptedicts a 1/) dependence of extinctfon; however, the
measurements shox a slight increasé of extinction «ith
wavelength. This disagreement betueen telation (5) and
measutements is attriduted to imaccuracy of the Q, = cx
approximation (see text and figure A-5). .




The transmission measurements for the larger fog oil droplets generated
by hot plate dissemination are compared to the prediction (5) in figures
10 and 11. For the 3um to Sum spectral region (figure 10) the predicted
0_/M values have roughly 1/1 wavelength dependence and are in agreement
with the measurements within a factor 2. Note that the extinction
measurements at the smallest optical depths in figure 10 (the optical
depths range from 0.38 to 0.72 for the solid-curve measurement) are a
factor 1.5 to 3 higher than those for the larger optical depths (which
range from 1.8 to 3.5). Whether this difference is a reflection of
multiple scatter contributions to the transmission signal at the larger
optical depths (which would cause the extinction coefficient to be
underestimated from the transmission measurement), or whether it is
simply a reflection of the experimental errors is not known. For the
8m to 12m 1region, the Q, = cx apprtoximation (5) overpredicts the
extinction to mass ratio o,/M by a factor 1.2 to 4 (figure 11).

This oveirprediction is even more serious for smaller fog oil smoke
particles as demonstrated by comparison of measured and predicted ce/M
values in figures 12 and 13. These particles uwere generated by pyro-
technic dissemination and have correspondingly smaller size
parameters. Thus the usefulness of relation (5) for fog oil is only
marginal in the 3ium to 5um and 8um to 12um IR spectral tregions, as the
Mie extinction efficiency is generally not well approximated by a lineatr
function of size parameter in these wavelength regions.

FS Smoke

The final comparison of extinction to mass content 0o,/M according to
relation (5) compared to measurement 1is for sulfuric acid mists gen-
erated by Carlon et al.!® Their tesults for 38 percent sulfuric acid
snoke for the A = 0.5mm to 2.5um, 7um to l14m spectral regions compared
to our size-distribution-independent relation (5) are shown in figures
14 and 15, The ertrotr bars superimposed on The measurements mark the
range of values obtained for several radiometer scans.* For the 7um to
l4m spectral region, the Q, = cx approximation given by (5) is gen-
erally within error of measutement. On the other hand, the equation (5)
ptediction generally overestimates the measurements in the 0.55mm to
2.75m wavelength range.

'Y, R. Carlon, D, H. Anderson, M. E., Milham, T. L. Tarnove, R. H.
Frickel, and 1. Sindoni, 1977, Infrared Extinction Spectra of Some
Common Liquid Aerosols, Appl Opt, 16:1598-1605

*H., R. Carlon, private co-mnﬁ:ation, 1978
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Figure 10. Ratio of aerosol extinction coefficient to mass content

predicted according to the linear relation (5) (open
circles) and measured by Milham (curves) for fog oili smoke
generated by dropping oil onto a hot plate. The different
curves are for transmission measurements made with different
batches of fog oil with varying optical depth (the optical
depth for a particular wavelength can be estimated by
multiplying the value of o,/M by the value of ML). Smaller
values of extinction coefficient are inferved from
transmission measurements wmade at larger optical depths,
suggesting that multiple scatter contributions may be
becoming important.

="' Foe on
~:O.9 © THEORY (ae-%-:-:-m

E 0.8 MEAS. (MILHAM,1976; HOT PLATE DISSEMINATION)
ML =0.38 gm'z

w -2
—3 ———— ML =275
AL — ML-s.n::'*

9 10
WAVELENGTH (pm)
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particles with radii r < 1‘,), and particles have size
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(e.g., figure 1).
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The 1elation (5) works so well in the 7um to l4um spectral region as
compared to the 0.55um to 1l.75im region because: (1) the maximum radius
conditions are easily satisfied at these longer uwavelengths (maximum
radlus values are on the order of 3um to 7um from table A-12) as only
about 2 percent of the sulfuric acid aerosol smoke mass is contributed
by particles with radii r > lum, (2) for r < lum, the Mle extinction
efficiency factor is accurately approximated by Q, = cx as, for example,
in figure 2.

PRACTICAL APPLICATIONS OF THE

O — M, - M, AND ¢ - M RELATIONS

%
Unique relations between tradiative properties of smoke aerosols and
their mass content should be of considerable practical value. For
example, according to the extinction-mass relation (5), the integrated
mass content of smoke along a path could be determined from an IR
transmission measurement between the endpoints of the path. The path
must be short enough that multiple scattering efrects and attenuation
caused by gaseous absorption are negligible; also, forwardscatter
corrections must be emall.'®>!® Thus, for a CO, laser (A = 10.6um)
tranamission loss of 0.5 over a 100-m phosphoric acid (50 ge:cent) smoke
path, a path-integrated average mass content of 0.016 g m - is predicted
according to relation (5) using the value of 3wc/2ip from table A-2.
Similarly, had the smoke consisted of HC (50 pexcent zinc chloride in
water) or FS (38 percent sulfuric acid in water) rather than phosphoric
acid, smoke mass contents of 0.046 g m - and 0.022 g m ° would result
(from values of 3%c/2Xp in tables A-7 and A-12).

An application of the relation (6) between absorption and liquid wmass
content of smokes would be the inference of smoke mass at a particular
point in a smoke cloud from an in situ weasurement of the aerosol
absorption with an IR laser spectrophone. Smoke particles generally
have maximum radif{ of 1um to 2um, and tables A-~1 through A-13 shox that
the maximum radius condition for the o, - M relation (6) is satisfied
for most IR wavelengths considered. For example, an absorption measure-
ment with a CO, laser spectrophone of 10 km ! (using the value of
3#c”/2xp from tables A-3, A-8, and A-13 at A = 10.5um) corresponds to
mass contents of 0.040, 0.31, and 0.054 g m~3 for 65 percent Hq,P0,, 65
percent ZnCl, (HC), and 75 percent sulfuric acid smckes.

194, Deepak and M. A. Box, 1978, Forward Scatteriag Cortections for
Optical Extinction Measurements in Aerosol Media. 1: DMonodispersions,

Appl Opt, 17:2900-2908

195, Deepak and M. A. Box, 1978, Foruard Scattering Corrections for
Optical Extinction Measutements in Asxosol Media. 2: Polydispersions,

Appl Opt, 17:3169-3176
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The relations (5) and (6) can also be used to estimate the single scat-
tering albedo for polydispersions of smoke particles. The albedo is
defined as the ratio scattering to extinction and is an important param-
eter in determining the contrast obtainable by an IR sensor such as a
forvard looking infrared system (FLIR). From relations (5) and (6), the
single scatter albedo w, is a simple function of the slope parameters
c(m) and c¢”"(m):

cs g -0

} [

kO-Ts—————-=1..E_., (8)
e e

where the refractive index m is characteristic of the smoke material at
the wavelength of interest. Values of ¢ and ¢” from tables A-1 through
A-13 must be substituted cautiously into equation (8) to obtain the
single scatter albedo since the maximum radius conditions for the smoke
particles (which are also given in the tables) must be satisfied for
both extinction and absorption. However, these conditions are generally
easily satisfied for all smokes considered here in the 3um to Sum and
8um to 12m spectral regions. Finally, because of the large errors
involved in the Qe = cx approximation for only slightly absorbing parti-
cles, the application of equation (8) to HC, diesel oil, and fog oil
smckes 18 not recommended when errors in the quantity 3wc/2kp exceed 50
percent (see footnotes of tables A-1 through A-13).

The 1last application suggested here toward a specific DOD hardware
system concerns the relation (7) between smoke backscatter coefficient
and mass content. The copperhead missile seeker system sometimes relies
on an Nd-YAG laser backscatter signal to find its target. If the inter-
vening atmosphere between the missile and target contains smoke parti-
cles, the performance of the seeker system may be degraded because the
backscatter signal from the smoke obscurant may obfuscate that from the
target. According to relation (7) the backscatter from the smoke may be
calculated directly from knowledge of the integrated smoke mass content
betueen seeker and target (neglecting multiple scattering effects). For
example, a cloud of 50 percent phosphoric acid smoke with mass loadinf
0.1l gm "3 would result in a backscatter ctoss section of O. 0034m™1

at A = 1006‘“.

COMPARISON OF EXTINCTION COEFFICIENTS OF PHOSPHORIC
ACID AND HC SMOKE AT VARIOUS RELATIVE HUMIDITIES

Another application of these approximations 1s toward the tadiative
propetties of hygroscopic smoke paxticles., Phosphoric acid and HC smoke
particles axe hygroscopic. They grox at the expense of atmosphexic
water vapor to equilibrium sizes laxger than their original sizes,
depending on the atmospheric temperature and relative humidity. This
incressse in size asometines cauees incteassd extinction and
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obscuration. To make a comparison of the effectiveness of these two
smokes, we compare their extinction coefficients as a function of rela-
tive humidity, taking into account that their mass content increases
with telative humidity. We require that the initi{al "dry"” mass contents
be the same:

A N G )

(1) (2)

where oy ° , p, are the diy density values of the smoke materials (1)
2
and (2) and Vgl) . V‘(, ) are their initial volumes.

To predict the volume increases, we use the results of Hanel* for the
fractional tradius increases (1/r_) of phosphoric acid droplets (table
A-15) and HC smoke (table A-16) as a function of relative humidity f.
The results are based on Hanel”s original work.!' The tables show that
the fractional inctease in the smoke particle radii is nearly indepen-
dent of the initial particle radii. Thus we can assume to first ordex
that the fractional tadius increases t/r, are independent of particle
size, leading to the amoke volume content at relative humidity f being
given by (:/zo) Voo Using the approximation (5) relating extinction
coefficient to aerosol mass content, we can write the extinction coeffi-
cient at telative humidity f as

39c ,1 3
Oe(f) - -2‘1-.(—1.:) VO . : (10)

The ratio of phosphoric acid to HC smoke extinction coefficients (under
the constraint that their initial dry mass contents be the same) is then

3
D )o@ [(,,,°)<1)

c

e . ) . (11)
052) c(z) o‘(,l) l(x/xo)(ﬁ

The values of this ratio calculated for relative humidities from 40 to
95 percent at several wavelengths are given in table A~17. For relative

#pr ivate communication, 1978

243, Hanel, 1976, The Properties of Atmospheric Aerosol Particles as
Functions of Relative Humidity at Thermodynamic Equilibrium with the
Suttounding Moist Alr, Adv in Geophys, 19:73-188

.




humidities f < 80 percent, phosphoric acid 1s a more effective obscurant
(as it has a greater extinction coefficient) in the visible and 10.5um
to 12um spectral regions, but less effective in the 3um region.

Results for the 4um to 101m spectral region have been purposely left out
since we expect the Qe = cx approximation (5) to be substantially in
error for HC smoke in this region. For a relative humidity of 95 per-
cent, HC smoke is more effective at all considered wavelengths.

CONCLUSIONS

We have shoun that a linear relation, independent of the form of the
size distribution, should exist betueen volume extinction coefficient,
absorption coefficient, backscatter coefficient, and mass content of
saveral military smokes. However, the relation is valid only at partic-
ular wavelengths determined by the range of particle sizes present in
the polydispersions of smoke particles. Our prediction betueen extinc-
tion coefficient and mass content has been compared to transmission
measurements available in the literature on phosphoric acid, HC, fog
0il, and FS smokes. The agreement is good (generally within 30 percent)
for highly absorbing phosphoric acid and FS smoke in the 3uwm to 5ium and
8um to 12um spectral regions, but only fair-to-poor for weakly absorbing
HC and fog oil smokes (the relation overpredicts extinction by as much
as a factor 2.5 for HC and 10 for fog oil generated by pyrotechnic).
Four applications of our relationships between smoke aerosol extinction,
absorption, backscatter, and mass content are suggested: (1) inference
of path-integrated mass content of smoke from an IR laser transmissome-
ter measurement through the smoke cloud, (2) determination of smoke mass
content at a particular point in a smoke cloud from a smoke aerosol
absorption measurement at that point with an IR laser spectrophone, (3)
determination of smoke backscatter coefficient from knowledge of smoke
mass content, and (4) prediction of the extinction coefficlent of phos-
phoric acid and HC smoke as a function of atmospheric relative humidity.
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Figure A-3. Same as figure A-1 only for HC smoke droplets at a
wavelength A = 0,55m. In this case particles mist have
size parameters x < 6 (corresponding to radii r < 0.5um)
for the Qo = cx approximation to apply. Since HC smoke
particles generally violate this condition (e.g., Milham
1976, reports size distributions of HC smoke having mass
mean radif of 0.66um), the 1linear relation (5) will
probably overestimate extinction at A = 0.55m.

(5]

Q, (Mie)
20% ZnC(z {m={.402-00I3i)
50% ZnCly (m=1.46-00I5i)
75% ZnCly (m=1531-00Ni)

L
{

i
s,

EFFICIENCY FACTOR
FOR EXTINCTION Qq
w

. N

; L

4 ; A=38um ’
L HC SMOKE

0 T T T T T T T T T ‘

o 5 10 15 ¢

SIZE PARAMETER X

Figure A-4. Same as figure A-3 except for a wavelength L = 3.8ym, At
this longer wavelength the maximum radius condition 1is for
particles with radii r ¥ 3m (corresponding to x 2 5) and )
should be satisfied for HC smdke particles. NHowever, sven :
though this condition is satisfied, the Q, = cx approxima-~ i
tion is not very accurate, a&s the Mie efticiencias are !
.unmuagly oversstinsted for x X 2 snd underestimated i
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Same as figure A-3 except for a wavelength A = 10.5ym, Aﬁ
this wavelength the maximum radius condition for the Q, =
cx approximations should be easily satisfied (r_ = l%um
corresponds to X, = 6). But because HC smoke ;arcicles
will have size parmeters less than x = 2 at this wave-
length, the Q, = cx approximation overest{mates extinction
and the linear relation (5) is not expected to be very
accurate,
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Ef ficiency factors for extiaction Q, for fog oil and diesel
oil droplets st a vavelength ) = 3.8im, md. their approxi-
mation by straight lines Q.(x) = ex for x < 5, As for HC
smoke at this wavelength, the Q, = ¢x approximation is not

very accurate, as_the Mie efficlencies are grossly over-
estimated for x < 2 and underestimated for 2 < x < 5.
HBence for the linear relation (5) between #xtinction and
ssdg content to be applicadble we must have particles with
radii theoughout the range O < ¥ < 3um (corresponding to O
<x 2 3) so that csacellation of errors cam odcur.
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Figure A-7. Same as figure A-6 except for A = 10,5um.
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(in water) droplets at the wavelength A = 0.55um and its
approximation by a straight line G(x) = ¢"x for x < 1l.
The approximation overestimates the exact value of G at
some size parsseters x, but underestimates it at others
(still with x < 11), These two errors tend to cancel out
in the evaluation of the integral in equation (3). This
spproximation leads to the 1linsar relation (7) batween
backscattar coefficient and aerosol mesa content, which is
indepandent of the particle sise distribution.
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TABLE A-1. 20 PERCENT ORTHOPHOSPHORIC ACID IN WATER
(density o = 1.1134 ¢ cm'3)

At a given wavelength ) the efficlency factor for extinction Qe (and
absorption Qa) for phosphoric acid smokes can be approximated by a linear
function of size parameter Q, = cx (or Q, = ¢"x) for size parameters x < x,
or equivalently for particle radil r < r.. The values of rj and ¢ (and ¢”)
are determined from the efficlency curves (see for example figure A-1). If a
polydispersion of phosphoric acid droplets has particles with radii r < r (1),
from the table we can find the wavelengths for which a linear relationship
between extinction (or absorption) and aerosol mass content exists, and the
appropriate value of the parameter ¢ (or c¢c”). The value of the quantity
3nc/2xp (or 3mc”/2)2p) multiplied by the smoke mass content M gives the
extinction coefficlient % (or absorption coefficient aa). Also given in the
table is the ratio of the absorption to the extinction coefficient ca/ae. The

single-scatter albedo w, = 1 - o,/qd,.

Extinction Absorption
Am) o orm) 3negT) ¢ ram)  FEme™) oo,
0.55  0.69 0.52 5.3 ¢
1.06 0.69 1.0 2.7 ¢
3.0 076 1.9 1.1 a 0.59 1.1 0.84 a 0.78
3.5  0.76 3.1 0.92¢ 0.088 4.9 0.1 a 0.12
3.8 0.67 3.8 0.75¢ 0.054 5.8 0.060a 0.08
4.0  0.67 4.0 0.7c 0.058 6.8 0.0614 0.09
4.5 - - - 0.068 8.0 0.064, -
5.0 - - - 0.074 6.4 0.063a - -
8.0 0.53 7.3 0.28¢ 0.14  10.0 0.076a 0.27 ’T -
8.5 0.52 7.2 -  0.26c 0.8 8.7 0.088a 0.34 i
9.0 0.49 8.4 0.23c 0.16  10.0 0.074a 0.32 :
9.5  0.45 8.7 0.201 0.17 10 0.0774 0.38 i~
0.0 0.48 7.7 0.20a 0.24 8.4 0.099a 0.49 :
0.5  0.43 8.6 0.17a 0.20  10.0 0.0814 0.47 !
1.0 040 7.4 0.15a 0.26 7.9 0.10 a 0.66
1.5 0.48 6.9 0.16a 0.33 6.3 0.12 a 0.76
12,0 0.50 7.3 0.184 0.42 5.4 0.15 a 0.85

a - Error in 3wm/2 u' (o 3wc”/21p) is astimated to be less than 30 percent.
b - Brror in 3Inc/23p (or Ise”/21p) is estimated to e less than 50 percent.
e ~ Brror in 3m/2Xp (or 3" /220) 1is estimated to be less than 100 percent.




TABLE A-2. 50 PERCENT ORTHOPHOSPHORIC ACID IN WATER

(density p = 1.335 g cn™3

)

Extinction Absorption
A(um) ¢ v (um) g’;—;(ng“) | ¢ ro(um) %’%(ng‘l) 0,/0
0.55 0.72 0.50 4.7 .
1.06 0.72 0.96 2.4 ¢
. 3.0 0.62 2.2 0.74a 0.39 1.4 0.46a 0.63
3.5 N.68 2.7 0.68b 0.30 2.2 0.30a 0.43
3.8 0.70 3.0 0.64p 0.25 2.9 0.23a 0.35
4.0 0.66 3.3 0.58b 0.24 3.1 0.214 0.36
4.5 0.69 3.6 0.54p 0.24 4.0 0.194 0.35
5.0 0.65 4.2 0.460b 0.21 4.6 0.15a 0.33
8.0 0.58 5.0 0.26 a 0.40 4.4 0.18a 0.69
8.5 0.72 4.0 0.30a 0.54 4.1 0.224 0.74
9.0 0.79 4.2 0.31a 0.52 4.3 0.20, 0.66
9.5 0.93 2.9 0.35a 0.83 2.2 0.31,4 0.89
10.0 1.59 2.7 0.564 1.41 1.6 0.50a 0.89
10.5 1.30 4.3 0.43a 0.70 4.3 0.24a 0.54
11.0 1.05 5.2 0.344 0.53 5.5 0.17a 0.51
11.5 1.00 5.9 0.31a 0.52 5.7 0.16a 0.52
12.0 0.92 6.2 0.274 0.48 6.4 0.14a 0.52
!
f a - Error in 3m/2)p (or 3m”/21)0) is estimated to be less than 30 percent.
b ~ Error in 3m/2xp (or 3m"/2)p) is estimated to be less than 50 percent.
{ ¢ - Error in 3m/2%p (or 3mc”/21p) is estimated to be less than 100 percent.
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- Error in 3xc/2ip (or 3mc”/2)p) is estimated to be less than
¢ - Error in 3xc/2xp (or 3w”/2ip) is estimated to be less
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TABLE A-3. 65 PERCENT ORTHOPHOSPHORIC ACID IN WATER
(density o = 1.475 g cm™3)
Extinction Absorption

¢ r () Mmeg-1) ¢ r(m  mg) o /o
s m 2)\p o m 2\p a' e
0.83 0.44 4.8 ¢
0.83 0.85 2.5 ¢
0.58 2.5 0.61a 0.33 1.7 0.34a 0.56
0.68 2.6 0.62a 0.35 2.0 0.32a 0.52
0.70 2.9 0.59a 0.31 2.3 0.267 0.45
0.67 3.1 0.54a 0.29 2.7 0.23a 0.43
0.72 3.3 0.51b 0.29 3.3 0.20a 0.40
0.67 3.9 0.43b 0.25 4.6 0.16a 0.37
0.62 4.0 0.25a 0.47 3.5 0.19a 0.76
0.85 3.3 0.32a 0.70 3.0 0.26a . 0.82
0.93 3.7 0.33a 0.73 3.3 0.26a 0.78
1.39 2.2 0.47a 1.28 1.6 ' 0.43a 0.92
1.93 2.5 0.62a 1.66 1.6 0.53a 0.86
1.59 3.7 0.48b 0.83 4.0 0.25a 0.52
1.31 4.4 0.38b 0.65 5.0 0.19, 0.50
1.25 4.9 0.35b 0.59 5.7 0.17, 0.47
1.16 5.4 0.31b 0.55 5.9 0.15a 0.48

30 percent.
50 percent.
100 percent.
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TABLE A-4.

(density o = 1.689 g cm-3)

Extinction

c

0.86
0.86
0.55
0.70
0.75
0.70
0.75
0.
0
1
1
2
2
1
1
1
1

72

.69
.06
.34
A7
.36
.90
.65
.54
.39

r,(um)

3nc, 2 -1
——(mﬂ 97')

85 PERCENT ORTHOPHOSPHORIC ACID IN WATER

0.42
0.81

BohW W N - NDNNDWWW NN NN
. . . . . . . . . . . . . . .
W N O O — N A OO NN — 00 W N

4,
2,
0.
.56a
.55a
4934
A7y
.40y
.24a
.35a
41a
.64a
.66a
.50b
42
.37
.33p

O O O O O O O O O oo o o o

4 ¢
3¢
51a

Absorption
c' rm(um) %%%l(ng") oa/oe
0.25 2.0 0.23a 0.46
0.42 1.7 0.33a 0.60
0.36 2.2 0.27a 0.49
0.36 2.2 0.255 0.51
0.33 3.3 0.21, 0.44
0.29 3.8 0.16a 0.40
0.57 3.2 0.20a 0.83
0.83 2.8 0.27a 0.78
1.01 2.6 0.31a 0.75
1.82 1.4 0.53a 0.84
2.04 1.4 0.57a 0.87
1.22 2.7 0.324 0.64
0.87 3.4 0.22a 0.53
0.80 3.8 0.19b 0.52
0.61 5.9 0.14a 0.44

a - Error in 3wmc/22p (or 3% /22p) is estimated to be less tham 30 percent.
b -~ Error in 3w/22p (or 3%”/2ip) is estimated to be less than 50 percent.
¢ - Error in 3m/22p (or 3m"/220) 1s estimated to be less than 100 percent.
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TABLE A-5. 20 PERCENT ZINC CHLORIDE IN WATER (HC SMCKE)
(density o = 1.1866 g cm 3)

At a given wavelength X the efficlency factor for extinctioa Oe (and
absorption Q;) for HC smoke aerosols can be approximated by a linear function
of size parameter Qe = cx (or 0, = ¢c“x) for size parameters x L x, or
equivalently for particle radii r < rp. The values of ry, and ¢ (and ¢”) are
determined from the efficiency curves (see for example figures A-3 through
A-5). If a polydispersion of HC smoke droplets has particles with radii r <
rm(x), from the table we can find the wavelengths for which a linear
relationship between extinction (or absorption) and aerosol mass content
exists, and the appropriate value of the parameter ¢ (or ¢” )., The value of
the quantity 3wxc/2Mp (or 3mc”/2ip) multiplied by the smcke mass content M
gives the extinction coefficient 0o (or obsorption coefficient °a)' Also
given in the table is the ratio of the absorption to the extinction

coefficient °a/°e' The single-scatter albedo w, = 1 - °a/°e'

Extinction Absorpticn
M‘ﬂ"_) < rp(um) %%(ng" ) ¢t rp(um) %(ng'1 ) g,/
0.55 0.68 0.5 4.9 ¢
1.06 0.68 0.98 2.5 ¢ .
3.0 0.81 1.9 1.1 a 0.46 1.6 0.64 a 0.79
3.5 0.80 2.9 0.91c 0.086 5.9 0.10 a 0.12
3.8 0.75 3.8 0.78¢ 0,051 7.7 0.053a 0.07
4.0 0.72 3.8 0.72¢ 0.050 8.4 0.050a 0.07
4.5 - - - 0.070 8.3 0.062a -
5.0 - - - 0.070 8.9 0.056a -
8.0 - - - 0.12 1.9 0.058a -
8.5 - - - 0.12 12.7 0.060a -
9.0 - - - 013 MN.9 0.058a -
9.5 - - - 0.14 1.7 0,058a -
10.0  0.45 12.0 0.18¢ 0.15 10.8 0.059a 0.33
10.5 0.41 11.6 0.15b 0.18 9.6 0.067a 0.43
1.0  0.39 10.2 0.14a 0.22 9.1 0.078a 0.56
1.5 0.40 10.6 0.13a 0.28 7.8 0.097a 0.70
12.0 0.47 8.6 0.15a 0.37 6.3 012 0.80

a - Brror in 3w/2)p (or 3m”/2ip) is estimated to be less than 30 percent.
b = Error in 3nc/22p (or 3m”/22p) 1is estimated to be less than 50 percent.
e = Brror in 3w/2)p (or 3%¢”/2)p) is estimated to be less than 100 percent.
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a -~ Error in 3%c/2ip (or 3m”/22p) 1s estimated to be less than 30 percent.
b ~ Error in 3wc/220 (or 3m”/21p) is estimated to be less than 50 percent.
¢ ~ Error in 3m/2)p (or 3xc”/23p) 1s estimated to be less than 100 percent.

TABLE A-6.

(density p = 1.4173 g ca™3)

40 PERCENT ZINC CHLORIDE IN WATER

Extinction
c r_(um) §£g(ng-1)
. m 2hp
0.76 0.47 4.6 ¢
0.76 0.9 2.4 ¢
0.85 1.7 0.95a
0.86 2.7 0.82¢
0.82 3.2 0.72¢
0.80 3.4 0.66.
0.51 10.8 0.16¢
0.46 11.1 0.14b
0.46 10.3 0.13a
0.48 10.0 0.13a

Absorption
c! rm(um) %%%L(ng") oa/oe
0.40 1.9 0.44 a 0.47
0.093 5.4 0.088a 0.10
0.049 7.7 0.043a 0.052
0.043 8.4 0.036a 0.054
0.064 8.7 0.048a -
0.066 9.6 0.084a -
0.1 11.9 0.046a -
0.12  12.6 0.048a -
0.12 12.4 0.046a -
0.14 1.3 ' 0.048a -
0.16  10.4 0.054a -
0.18  10.7 0.056a 0.35
0.21 9.3 0.064a G.46
0.26 8.4 0.075a 0.57
0.33 7.4 0.0924 0.69




TABLE A-7.

(density p = 1.5681 g cn™d)

50 PERCENT ZINC CHLORIDE IN WATER

Extinction
A(wm) ¢ v (um) '3§§ m’g~")
0.55 0.78 0.46 4.3 c
1.06 0.78 0.89 2.2¢c
3.0 0.81 1.9 0.81a
3.5 0.89 2.6 0.76¢
3.8 0.86 3.0 0.68¢
4.0 0.83 3.3 0.62¢
4.5 - - -
5.0 - - =
8.0 - - -
8.5 - - -
9.0 - - -
9.5 - = -
10.0 - - -
10.5 0.53 11.0 0.15¢
11.0 0.52 11.6 0.14n
11.5 0.48 1.5 0.13a
12.0 0.51 9.5 0.13a

Absprntion
¢ r(m)  ZEmigm) o /o

m Xp a e .
0.47 1.4 0.47 a 0.58
0.12 3.5 0.10 a 0.14
0.061 6.3 0.0484 0.07
0.058 5.3 0.0844 0.07
0.058 6.2 0.039a -
0.066 5.8 0.040a -
0.099  10.8 0.037a -
0.1 1.8 0.038a -
0.13 9.7 0.042a -
0.13  M.2 0.043a -
0.15 1.1 0.044a -
0.17  10.3 0.048a 0.32
0.19  10.0 © 0.053a 0.37
0.24 7.9 0.063a 0.50
0.3 7.1 0.0784 0.6

a - Error in 3m/2Xp (or 3we"/21p) 1i estimpted to be less than 30 percent.
b - Error ia 3m/2x0 (or 3m"/2)0) 16 estimsted to be less than 50 percent.
c - Brror in 3wxc/2)p (or 3wc”/21p) is estimated to be less than 100 percent.




TABLE A-8. 65 PERCENT ZINC CHLORIDE IN WATER

(density o =~ 1.851 g en )
Extinction Absorption
A(um) < rp (um) %'{%(ng“) ¢t orp(um) —3—’;-3-'—(ng-‘> 0,/9
0.55 0.88  0.40 4.1 ¢
1.06 0.88  0.77 2.1 ¢
3.0 0.95 0.96 0.80a 0.43 1.6 0.36 a 0.45
3.5 1.00 2.4 0.73¢ 0.087 4.3 0.063a 0.09
3.8 0.97 2.8 0.65¢ 0.039 5.2 0.026a 0.04
4.0  0.92 3.0 0.59¢ 0.025 7.4 0.016a 0.03
4.5 - - - 0.037 7.1 0.021a -
| 5.0 - - - 0.045 6.9 0.023a ~
f 8.0 - - - 0.095 9.5 0.030a -
8.5 - - - 0.1 9.0 0.034a -
;g 9.0 - - - 0.11 10.9 0.032a -
| 9.5 - - - 0.099  12.5 0.027a - _
j 10.0 - - - 0.12 1.9 0.031a - .
10.5 - - - 0.13 12.3 0.032a -
i 11.0 - - - 0.15 12.3 0.034a -
1.5 0.59 10.9 0.13c 0.17 1.3 0.047a 0.29 -
12.0 0.56 10.1 0.12p 0.24 9.2 0.050a 0.42

a ~ Brror 1in 3w/22p (or 3m’/2)p) is estimated to be less than 30 percent. ‘
b ~ Error in 3x/2)p (or 3m”/2%p) 16 estimated to de less than 50 percent. i
¢ ~ Brror in 3we/22p (oxr 3m”/21p) 18 estimated to be less than 100 percent.




TABLE A-9. 75 PERCENT ZINC CHLORIDE IN WATER

(density p = 2,06 g cn"3)

Extinction . Absorption
A(pm) < rplum) g—;i(ng") c' rm(um) %’%(ng") 0,/0
0.55  0.91 0.40 3.8 ¢
) 1.06  0.91 0.7 2.0 ¢
3.0 1.0 1.4 0.77v 0.43 1.7 0.33 a 0.42
3.5 1.04 2.2 0.68c 0.086 4.2 0.056a 0.08
3.8 1.08 2.4 0.62¢ 0.053 5.3 0.0324 0.05
4.0 1.02 2.7 0.58¢ 0.030 6.8 0.017a 0.03
a5 - - - 0.035 6.8 0.018a - .
i: 50 - - - 0.086 7-3 0.021a - f
8.0 - - - 0.066 9-6 0.019a -
8.5 - - - 0.087 0.8 0.023a - ‘
9.0 - - - 0.10 1.8  0.026a - |
i 9.5 - - - 0.0 13.2 0.024a - !
/ 10.0 - - - 0.12 11.4 0.028a - !
10.5 - - - 0.10 13.7 0.022a -
no - - - 0.083 13.6 0.027a - |
1.5 - - - 0.080 16.5 0.016a - }
12.0 - - - 0.16 1.0 0.030, - ;
| i
; . |
| |
g a - Error in 3x/2)p (or 3wc"/21p) 1is estimated to be less than 30 percent. ‘

b ~ Error ia 3m/22p (or 3w"/210) {s estimated to be less than 50 percent. :
¢ = Error in 3wm/210 (or 3w"/2ip) 1s estimated to be less than 100 perceat. £
i
l




TABLE A-10. 100 PERCENT DIESEL FUEL OIL
(density p = 0.8419 g m~2)

At 2 given wavelength A the efficiency factor for extinction Q, (and absorp-
tion Qa) for diesel fuel oil aerosols can be approximated by a linear function
of size parameter Qe = ¢cx (or Qa = ¢“x) for size parameters x < %, Or equiva-
lently for particle radii r < rp. The values of r, and ¢ (and ¢”) are deter-
mined from the efficiency curves (see for example figures A~€ through A-7).

If a polydispersion of oil droplets has particles with radii r 5;rm(x), from
the table we can find the wavelengths for which a linear relationship between
extinction (or absorption) and aerosol mass content exists, and the
appropriate value of the parameter ¢ (or ¢”). The value of the quantity
3ne/2xp (or 3nc”/2xp) multiplied by the smoke or oil mass content M gives the
extinction coefficient LA (or absorption coefficient aa). Also given in the
table is the ratio of the absorption to the extinction coefficient aa/oe. The

single-scatter albedo w, = 1 - g, /0.

Extinction Absorption
Aum) ¢ v (um) %%g(ng") c' rpum) g;gl m’g™!) o, /o,
0.55 0.84 0.4 7.9¢
1.06 0.84 0.8 4.1¢
3.0 0.83 2.5 1.5¢ 0,049 6.8 0.092a 0.06
3.5 0.92 2.3 1.5¢ n.24 3.1 0.38 a 0.26
3.8 0.87 3.0 1.3¢ 0.086 3.8 0.13 a 0.10
4.0 0.86 3. 1.2¢ 0.087 5.6 0.12 a 0.10
4.5 ~ - - .12 5.6 0.15 a -
5.0 - - - 0.15 5.2 0.16 a -
: 8.0 - - - 0.23 6.8 0.6 a -
4 8.5 - - - 0.2 7.4 0.16 o -
! 9.0 - - - 0.26 6.8 0.16 4 -
! 9.5 - - - 0.26 8.1 0.15 4 -
10.0 - - - 0.28 8.3 0.16 4 -
10.5 - - - 0.28 8.4 0.15 & -
1.0 - - - 0.27 9.1 0.14 a - .
: 1.5 - - - 0.25 10.3 0.12a -
12.0 - - - 0.27 9.2 0.13a - ]

~ Brror in 3wc/2Aip (or 3w”/2)p) is estimsted to be less than 30 percent.
: ~ Error in 3wm/21p (or 3w’ /2)p) is estimsted to be less than 100 percent.
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TABLE A-11. 100 PERCENT PALE OIL (FOG OIL)
(density p = 0.914 g cn~3y

At a given wavelength A the efficiency factor for extinction Qe (and
absorption Q,) for fog oil aerosols can be approximated by a linear function
of size parameter Q, = cx (or Q, = c"x) for size parameters x < x, or
equivalently for particle radiil r <r, . The values of r, and c (and ¢”) are
determined from the efficiency curves (see for example figures A-6 through
A~7). 1f a polydispersion of oil droplets has particles with radii r < rm(x),
from the table we can find the wavelengths for which a linear relationship
between extinction (or absorption) and aerosol mass content exists, and the
appropriate value of the parameter ¢ (or c¢c”). The value of the quantity
37c¢/2xp (or 3nc”/22p) multiplied by the smoke or oil mass content M gives the
extinction coefficient % (or absorption coefficient °a)' Alsc given in the
table ls the ratio of the absorption to the extinction coefficient °a/°e‘ The

single-scatter albedo w, = 1 - o,/0,.

[+
Extinction ' Absorption

A{um) c rm(um) %%(ng") c' rm(um) %’;—;—L(ng“ ) 0,/%
0.55 0.8 0,43 7.9¢

1.06  0.84 0,83 4.1c

3.0 0.9 2.2 1.6c 0.094 4.5 0.16a 0.10
3.5  0.93 2.4 1.4¢ 0.26 3.9 0.395 0.29
3.8 0.89 2.8 1.2¢ 0.15 2.7 0.20a 0.17
4.0 - - - 0.56 4.0 0.204 -

4.5 - - - 0.16 4.6 0.22, -

5.0 - - - 0.23 4.6 0.234 -

8.0 0.8 5.7 0.55¢ 0.38 5. 0.225 0.39
8.5 0.85 5.7 0.51¢ 0.34 5.6 0.20a 0.40
9.0 0.8 6.1 0.49¢ 0.35 6.0 0.20a 0.41
9.5  0.84 6.5 0.46¢ 0.36 6.6 0.20a 0.43
0.0 0.85 6.3 0.44¢ 0.40 6.1 0.20a 0.46
0.5 0.89 6.5 0.44c 0.38 7.0 0.18a 0.42
1.6 0.89 6.8 0.42¢ 0.37 7.4 0.17a 0.4
1.5 0.86 7.4 0.38¢ 0.36 7.6 0.15a 0.42
12.0 0.84 7.4 0.36¢ 0.39 7.2 0.17a 0.47

a ~ Error in 3wm/2)p (or 3wc"/2)ip) is estimated to be less than 30 percent.
¢ - Error in 3mc/2Z)p (or 3w~/21p) is estimated to be less than 100 percent,
not recommended for application to fog oil smoke generated by pyrotechaic.




TABLE A-12. 38 PERCENT SULFURIC ACID IN WATER
(density o = 1.286 g cn™3)

At a given wavelength X the efficiency factor for extinction Qe (and

absorption Qa) for sulfuric acid aerosols can be approximated by a linear

function of size parameter Qe = cx (or Qa = ¢“x) for size parameter x < x, or

equivalently for particle radii r < Toe

determined from the efficiency curves (see for example figures 1 and 2). If a

The values of T and ¢ (and ¢”) are

polydispersion of sulfuric acid droplets has particles with radii r g_rm(k),
from the table we can find the wavelengths for which a linear relationship
batween extinction (or absorption) and aerosol mass content exists, and the
appropriate value of the parameter ¢ (or ¢”). The value of the quantity
3rc/2xp (or 3wc”/2ip) multiplied by the aerosol mass content M gives the
extinction coefficient Oe (or absorption coefficient ba). Also given in the
table is the ratio of the absorption to the extinction coefficient °a/°e’ The

single-scatter albedo w, = 1 -~ o_/0,.
Extinction Absorption

Mm) ¢y (um) 3Trc(m g™) ¢ r(um) 3"° He—(m’g™') o /o,

0.55 0.72 0.5 4.8 c

1.06 0.69 1.0 2.6 ¢

3.0 0.66 2.1 0.81a 0.43 1.3 0.52a 0.65

3.5 0.70 3.0 0.73b 0.20 3.1 0.20a 0.28

3.8 0.65 3.5 0.63c 0.16 3.0 0.16a 0.25

4.0 0.64 3.7 0.59¢ 0.17 3.3 0.16a 0.27

4.5 0.60 4.2 0.49¢ 0.19 3.2 0.16a 0.32

5.0 0.57 4.8 0.42¢ 0.22 3.3 0.16a 0.39

8.0 0.68 3.7 0.32a 0.58 2.3 0.27a 0.85

8.5 1.06 3.3 0.46a 0.84 2.2 0.37a 0.80

9.0 0.90 4.8 0.37a 0.65 2.8 0.27a 0.72

9.5 1.09 4.3 0.42a 0.84 2.5 0.33a 0.77

10.0 0.96 5.5 0.35b 0.53 3.8 0.19a 0.55

10.5 0.8 5.9 0.31c 0.44 5.0 0.16a 0.49 .
11.0 0.84 6.4 0.28a 0.58 4.0 0.20a 0.69

11.5 0.96 6.2 0.30b 0.58 4.4 0.18a 0.60

4.5 0.16a 0.58 "

12.0 0.93 6.7 0.28n 0.54

& ~ Error in 3w/22p (or 3wm”/2)p) 1s estimated to be
b ~ Brror ia Im/22p (or Im”/220)) i entimeted to be lesa
¢ = Error im. 3w/2)p (or 3Iwm’/220) 1a eatimated to. Ve




TABLE A-13. 75 PERCENT SULFURIC ACID IN WATER
(density o = 1.669 g cm'a)

Extinction Absorption
A(um) < r o (um) %%%(ng") ' ro(um) 3;;' m’g~')  o,/0,
0.55  0.78 0.50 4.0 ¢
1.06 0.76 0.91 2.1 ¢
3.0 0.55 2.7 0.52a 0.25 2.1 0.23a 0.45
3.5 0.68 2.5 0.55a 0.41 1.6 0.33a 0.60
3.8 0.73 2.7 0.54a 0.36 1.8 0.27a 0.50
4.0 0.72 2.9 0.51b 0.34 2.1 0.24a 0.48
4.5 0.68 3.5 0.42b 0.33 2.2 0.21a 0.50
5.0 0.67 3.9 0.38b 0.32 2.5 0.18a 0.48
8.0 1.27 2.0 0.44a 1.21 1.4 0.43a 0.98
8.5 1.80 2.0 0.60a 1.60 1.4 0.54a 0.90
9.0 1.49 3.0 0.46a 1.18 1.9 0.37a 0.80
9.5 1.75 2.8 0.53a 1.38 1.8 0.41a 0.78
0.0 1.51 3.9 0.42p 0.82 3.2 0.23a 0.55
10.5 1.32 4.5 0.36c 0.69 3.8 0.19a 0.51
11.0  1.33 4.3 0.34a 0.87 3.2 0.23a 0.67
1.5  1.63 4.2 0.40c 0.78 3.9 0.19a 0.48
12.0 1.48 5.0 0.35¢ 0.57 5.1 0.14a 0.39

s ~ Error in 3m/23p (or 3m”/2)0) is estimated to be less than 30 percent.”
b - Error ia 3m/21p (or 3%c”/21p) 1s estimated to be less than 50 percent.
¢ - Error in 3m/22p (or 3ac”/210) is estimated to be lass than 100 percent.




TABLE A-14

For phosphoric acid, HC, fuel oil, and FS smoke particles the backscatter gain
G at wavelength )\ = 0.694um (or A = 1,06im) can be approximated by linear
functions of particle size parameter G(1, x) = ¢"(}) x for x < x,, or equiva-
lently for r <r,. This approximation leads to the aerosol backscatter
coefficient g being proportional to the smoke mass coutent M according to
equation (7). If particles in a polydispersion have radii r < r,, from the
table we can find the value of the quantity 3¢"/8ip which 1if multiplied by the

aerosol mass content M gives the backscatter coefficient Opge

Smoke Material A(um) c" rm(pm) %—:; (m2g~tsr-1)
20%  H3PO, 0.694 0.078 1.3 0.038¢
50% H3PO, 0.694 0.13 1.4 ~ 0.052a
65% H3PO, 0.694 0.18 1.4 0.067a
85%  H3PO, 0.694 0.26 1.3 ' 0.082a
20%  InCl, 0.694 0.079 1.2 0.036b
40% InCl, 0.694 0.12 1.4 0.046a
50% InCl, 0.694 0.16 1.4 0.055a
65% InCl, 0.694 0.23 1.3 0.068a

100%  Fuel oil 0.694 0.20 1.3 0.12 a
38%  H,SO, : 0.694 0.090 1.3 0.038b o
75%  H,S0, 0.694  0.15 1.5 0.048a
38%  H,S0, 1.06 0.082 2.0 0.023b
75%  H,S04 1.06 0.14 2.7 0.030a

a - Error in 3c”/8)p 1s estimited to be less ‘t_l"iau 30 percent. |
b - Error in 3c"/81p 1d estimsted to be less than 50 percest. )
c - Error in 3c"/8ip is estimatsd to be less than 100 percent. ,




TABLE A-15

Radius changes (r/ro) of phosphoric acid droplets as a fuuction of relative

hunidity f. The parameter r, i3 the radius of a "dry" particle having density

o
Po = 1.834 g em™3, (After Hanel, private communication, 1978.)

ro(cm): 107¢ 3107  107°  3.107°  107* 310" 107 3.10°* 1072

f r/r0

0.2 1.075 1.078 1.078 1.078 1.078 1.078 1.073 1.078 1.078
0.4 1.213  1.236 1.236 1.236 1.236 1.236 1.236¢ 1.236 1.236
0.6 1.327  1.346 1.352 1.353 1.354 1.354 1.354 1.354 1.354
- 0.7 1.396  1.425 1.436 1.440 1.441 1.441 1.441 1.441 1.481
0.8 1.489  1.535 1.555 1.561 1.563 1.564 1.564 1.564 1.564
0.9 1.652 1.752 1.795 1.810 1.816 1,817 1.817 .1.818 1.818

0.95 1.800 2.002 2.093 2.122 2.133 2.136 2.136 2.137 2.137
0.975 1.936 2.259 2.461 2.528 2.553 2.560 2.563 2.564 2.564
0.99 2.053 2.614 3.0917 3.287 3.362 3.385 3.392 3.394 3.39
0.995 2.102 2.853 3.676 4.076 4.240 4.289 4.307 4.312 4.314

e o e 5 A<t
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TABLE A-16 1

Radius changes (r/ro) of HC smoke droplets as a function of relative humidity . \
f. The parameter r, i{s the radius of a "dry” particle having density Py = 1

2.91 g cm-3. (After Hinel, private commmication, 1978,)

ro(cm): 107 3-107% 107 3-107° 107" 3-1C7* 107 3.107* 1072

f r/r

0.2 1.207  1.210 1.210 1.211  1.210 1.2n 1.2 1.211 1.2n
0.4 1.354  1.382 1.394 1.398 1.399 1.400 1.400 1.400 1.400
0.6 1.519 1.555 1.568 1.572 1.573 1.573 1.573 1.573 1.E73
0.7 1.624 1.669 1.682 1.685 1.687 1.687 1.687 1.687 1.€87
0.8 1.740 1.794 1.818 1.825 1.827 1.828 1.828 1.828 1.828
0.85 1.817 1.896 1.928 1.938 1.944 1.945 1.945 1.945 1.945

0.9 1.930 2.076 2.134 2.151 2.157 2.159 2.160 2.160 2.160
0.95 2.162 2.452 2.593 2.638 2.653 2.658 2.660 2.660 2.660
0.975 2.386 2.953 3.246 3.340 3.372 3.382 3.385 3.386 3.386 )
0.99 2.651 3.677 4.279 4.493 4.573 4.597 4.605 4.608 4.608 -
0.995 2.791 4.170 5.182 5.583 5.739 5.784 5.801 5.806 5.807




Ratio of the extinction coefficient of phosphoric acid smoke to that for HC

smoke as a function of relative humidity calculated according to equation

(10).

A (um)

0.55

1.06
3.0

10.5
1.0
12.0

TABLE A-17

Relative Humidity

40%

1.04

1.04
n.80

2.79
2.50
2.10

60%

1.01
1.01
0.98

1.81
1.63
1.36

80%

1.00
1.00
0.92

1.04
1.02
1.04

95%

0.82
0.82
0.82

0.82
0.82

0.82

-
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